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Unsteady natural convection in a triangular
enclosure induced by absorption of radiation
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(Received 10 March 2001 and in revised form 10 August 2001)

The authors have previously reported a model experiment on the unsteady natural
convection in a triangular domain induced by the absorption of solar radiation. This
issue is reconsidered here both analytically and numerically. The present study consists
of two parts: a scaling analysis and a numerical simulation. The scaling analysis for
small bottom slopes reveals that a number of flow regimes are possible depending on
the Rayleigh number and the relative value of certain non-dimensional parameters
describing the flow. In a typical situation, the flow can be classified broadly into a
conductive, a transitional or a convective regime determined merely by the Rayleigh
number. Proper scales have been established to quantify the flow properties in each
of these flow regimes. The numerical simulation has verified the scaling results.

1. Introduction
Natural convection driven by imposed horizontal temperature gradients finds ap-

plication in many natural and geophysical systems, and consequently a vast literature
exists on the various forms of forcing (internal or external), geometries and temporal
conditions of the resultant flows (steady or unsteady). Much of the work has been
in the context of regularly shaped containers and idealized boundary and initial con-
ditions. Excellent reviews of the topic may be found in, for example, Ostrach (1988)
and Hyun (1994).

In practice, the applications have neither idealized boundary or initial conditions,
nor simple geometries. Frequently, the geometries are complex, the forcing is unsteady
and the boundary conditions are more complex than a relatively simple application of
an isothermal or isoflux thermal condition. One geometry that has attracted relatively
little attention is that of a triangular enclosure, although interest has increased over
the last two decades. The interest in heating by means of internal sources has been
comparatively limited.

The previous studies in triangular geometries have been motivated by two main
applications: the fluid dynamics and heat transfer in an attic space with an imposed
temperature difference between the base and the sloping boundary (e.g. Poulikakos
& Bejan 1983a, b; Salmun 1995a, b; Asan & Namli 2000); and the fluid dynamics
of nearshore lake waters, reservoir sidearms or other shallow-water bodies with a
sloping bottom (e.g. Horsch & Stefan 1988; Horsch, Stefan & Gavali 1994; Farrow
& Patterson 1993a, b, 1994). Although there are similarities between the two classes
of problem, there are also many differences, some of which are fundamental.

In the attic case, the triangular domain is filled with air, which typically has a
Prandtl number Pr ∼ O(1), although Bejan & Poulikakos (1982) also considered
the case where the space was filled with a porous medium. The analysis of the attic
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space was for the case of imposed isothermal conditions on the horizontal bottom
and sloping roof of the cavity. In the night-time configuration, the upper surface was
cooler than the lower boundary (Poulikakos & Bejan 1983a, b); during the day, the
converse was assumed. There is obvious potential for a Bénard type instability to
occur during the night-time phase.

In the geophysical application, the fluid is water, with Pr ∼ O(10), and the forcing
is primarily through the unequal absorption of incident solar radiation during the day
or unequal surface cooling fluxes at night, both resulting from a varying depth. Put
simply for the day-time case, in the shallow parts, the vertically averaged volumetric
rate of absorption of a spatially uniform incident radiation flux is greater than in the
deeper parts, resulting in relatively warm shallow regions when compared with the
deep regions. A convectively driven circulation results, with a warm outflow along
the surface. A similar but converse argument may be made for the night-time cooling
condition. The attic and geophysical problems are, at first sight at least, separated by
the different forms of forcing.

The night-time attic problem (actually motivated by the geophysical application)
was re-examined by Salmun (1995a). He demonstrated by numerical analyses that, un-
der some circumstances, the motion became unstable and a multi-cellular flow resulted.
A stability analysis (Salmun 1995b), using the techniques developed by Farrow & Pat-
terson (1993b) further examined the stability of this Bénard-like problem. Farrow &
Patterson (1993a, 1994) used an asymptotic analysis based on the assumption of small
bottom slope to find analytical solutions to two models for the geophysical problem.
The first of these was a diurnal model in which it was assumed that all of the radiation
was absorbed in the available depth, resulting in relatively high heating rates in the
shallow part (Farrow & Patterson 1993a). This model was an extension of the earlier
scaling and numerical analysis of Patterson (1987). The second model, described in
Farrow & Patterson (1994), introduced a more realistic daytime heating model which
took explicit account of the depth dependent absorption of radiation. More impor-
tantly, this model assumed that any residual radiation at the bottom was absorbed by
the bottom and re-emitted as a heat flux. This flux was greater at the shallow end than
at the deeper, and gave rise to a destabilizing temperature gradient at the bottom.

This latter model then is driven by both the internal buoyancy sources and a
boundary flux, and therefore, to some extent, combines the principles of both the
attic model and the initial exposition of the geophysical model. In this case, there
are competing stability effects: the stabilizing effect of the stratification introduced
by the absorption of solar radiation in the upper part of the water column and
the destabilizing effect of the bottom-boundary heat flux. Although this problem is
framed in the context of the near-shore transport question, it is clearly relevant to
any buoyancy-driven flow in which these competing stability effects are present.

Lei, Patterson & Lee (2000b) conducted for the first time a model experiment to
visualize the convection process in a triangular cavity driven by this combination
of forcing mechanisms. In that experiment, a triangular tank with a sloping and
absorptive bottom was exposed to radiation from a theatre spotlamp. The flow
was visualized using a shadowgraph technique, and temperatures were measured
simultaneously at discrete locations along the sloping bottom. The experiment revealed
many features regarding the transient flow development in a triangular domain that
have not been reported previously in the literature. However, the existing experimental
results do not allow a meaningful parametric investigation of this flow. In fact, only
one set of the experiment series has been reported in Lei et al. (2000b), and thus it is
not sufficient to draw a full picture of the flow.
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In this paper, the unsteady natural convection in a triangular domain induced by
the absorption of radiation is investigated with a combined analytical and numerical
procedure. First, a scaling analysis is carried out to quantify the flow, and then a
numerical solution is provided to verify the scaling results. A similar procedure has
been previously applied to natural convection in a differentially heated rectangular
cavity (Patterson & Imberger 1980), to a rectangular cavity containing a distribution
of heat sources (Patterson 1984) and in an attic space (Poulikakos & Bejan 1983a),
and has proved to be successful. The numerical analysis confirms the scaling analysis,
and is supported by the experimental results for the parameters available.

It is worth noting here that one of the imposed length scales of any problem
involving the absorption of incident radiation is the attenuation length appropriate
to the radiation and the fluid. Typically, in natural water bodies, this length scale is
O(1–2 m), i.e. most of the radiation has been absorbed between the surface and this
depth. This means that for regions deeper than the attenuation depth, the boundary
flux will be small, and most of the incident radiation will be used in stratifying the
upper part of the water column. Consequently, a shallow-water body with a sloping
bottom may be separated into two regions: the first, a shallow region near the shore
in which the forcing is dominated by the boundary flux mechanism described above;
and the second deeper region in which the incident radiation serves only to stratify
the upper part of the water body, with the motions being driven passively by the
events of the first region. In this paper, we consider only the region affected by the
bottom heat flux; that is, those parts for which the depth is less than the attenuation
depth. A study of the interaction between these two regions is a more complex matter,
and is beyond the scope of the present paper.

2. Formulation and scaling
Under consideration is a two-dimensional wedge of length L and maximum depth

h with rigid non-slip boundaries at the bottom and end and an open boundary at
the top (see figure 1). The sloping bottom is assumed to be black so that it absorbs
any radiation reaching the bottom. The bottom slope, denoted by A, is defined as
A = tan θ = h/L, where θ is the inclination angle of the bottom about the horizontal
plane. The wedge is filled with water initially at rest and at temperature T0. At
time t = 0, a surface radiation of intensity I0 is initiated and thereafter maintained.
When the surface radiation travels through a water column, the radiation intensity
at a particular wavelength decreases with depth according to Beer’s law (e.g. Rabl &
Nielsen 1975; Kirk 1986; Farrow & Patterson 1994):

I = I0e
ηy (y 6 0), (1)

where I is the radiation intensity at a given depth, y the negative water depth, and η
the attenuation coefficient of water. Although the attenuation coefficient for water is
strongly dependent on the wavelength of the radiation (Hale & Querry 1973; Rabl
& Nielsen 1975) and the turbidity of water, in most limnological applications, it is
often assumed that the absorption of radiation may be characterized by a single bulk
attenuation coefficient, and that assumption is also followed here. It is seen from
equation (1) that there will be only limited radiation reaching a water depth beyond
η−1. For the present analysis, it is assumed that the maximum water depth in the
wedge is at most of the same order as the attenuation length scale of the radiation,
i.e. h < η−1. In other words, this study is concerned with shallow waters, in which a
significant amount of the surface radiation penetrates all the way through the water
column and reaches the bottom. The shallow-water assumption implies that the length
of the domain is about the order of 1/(Aη) or less, i.e. L < 1/(Aη).



184 C. Lei and J. C. Patterson

h
y = –Ax

y = 0

L

y

0
xõ

Figure 1. Geometry of the flow domain.

The water temperature in the enclosure increases as a consequence of the absorption
of radiation. The subsequent flow and temperature changes within the wedge are
then governed by the Navier–Stokes equations and energy equation with Boussinesq
assumptions:
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∂u
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= − 1
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂p

∂y
+ ν∇2v + gβ(T − T0), (3)
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∂u
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+
∂v
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where x and y are the horizontal and vertical coordinates originating from the tip
(see figure 1), u and v are the horizontal and vertical components of velocity, T is
the temperature, p is the pressure, t is the time, g is the acceleration due to gravity,
β, ρ0, ν and k are the coefficient of thermal expansion, density, kinematic viscosity
and thermal diffusivity for water at the reference temperature (T0), and S(x, y, t)
is an internal heating source which quantifies the absorption of radiation by the
water. Since the absorption of radiation is characterized by a single bulk attenuation
coefficient, the source term in equation (4), or the volumetric heating, is then given
by (see also Farrow & Patterson 1994)

S = H0ηeηy (y 6 0), (6)

where H0 is the surface heating intensity defined as H0 = I0/(ρ0Cp), and Cp is the
specific heat for water at the reference temperature.

The internal heating source defined by equation (6) is a stabilizing force and is
horizontally uniform. Therefore, the absorption of radiation by the water column
itself will not generate a horizontal temperature gradient to drive a circulation in the
tank. The principal driving force for the circulation comes from the heat exchange on
the sloping bottom. In shallow waters, a significant amount of radiation will penetrate
the water column and reach the bottom. For the present analysis, it is assumed that
any residual radiation is fully absorbed by the black bottom, which then immediately
releases this energy in the form of a boundary heat flux. Accordingly, the following
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boundary condition for the temperature is defined on the sloping bottom:

∂T

∂n̂
= −1

k
H0e

−Aηx (y = −Ax), (7)

where n̂ is the direction normal to the sloping bottom.
The rest of the boundary conditions for velocity and temperature are described

as follows. On the sloping bottom (y = −Ax), rigid non-slip velocity conditions
(u = v = 0) apply. The same velocity conditions apply to the endwall at x = L, which
is also insulated (i.e. ∂T/∂x = 0 at x = L). On the water surface (y = 0), it is assumed
that any heat loss through the surface is small compared with the heat capture
via absorption of radiation. In other words, it is assumed that the water surface is
insulated (i.e. ∂T/∂y = 0 at y = 0). It is also assumed that the water surface is
stress-free (∂u/∂y = 0 and v = 0). The stress-free surface condition is compatible with
the experiment (Lei et al. 2000b) and the field condition in geophysical applications,
and also matches the boundary condition used in Farrow & Patterson (1994). Similar
results are expected if a non-slip condition is specified on the top boundary. As can be
seen from the subsequent scaling, the stress-free surface condition does not enter the
scaling, and therefore the surface boundary condition should not alter the analytical
results. The same is true for the scaling analysis in a rectangular cavity (Patterson
& Imberger 1980) where a non-slip condition is specified on the top boundary.
Nevertheless, the non-slip boundary condition slightly modifies the numerical solution
by creating an additional viscous layer near the surface. Apart from this modification,
the overall flow features should remain the same as those under the stress-free
condition. This has been demonstrated by Horsch & Stefan (1988) in a numerical
modelling of the corresponding surface cooling process in a triangular domain, where
both stress-free and non-slip boundary conditions generated similar results.

2.1. Development of the boundary-layer flow

2.1.1. Growth of the thermal boundary layer

Before the surface radiation is initiated, there is no flow and no heat conduction
in the enclosure. Apart from the region near the sloping bottom, initially there is no
flow even after the surface radiation is applied since the absorption of penetrative
radiation itself has no horizontal dependence. The water temperature in the tank
increases owing to the absorption of the radiation by the water column. A balance
between the unsteady and source terms in equation (4) yields a temperature growth
scale

Ta ∼ H0ηeηyt ∼ H0ηt. (8)

Note that eηy ∼ 1 for |y| < η−1. Similarly, e−Aηx ∼ 1 for x < 1/(Aη).
The above temperature scale applies to the entire flow domain except the bottom

boundary region, where the water temperature increases owing to heat being con-
ducted from the sloping bottom. From the boundary condition (7), the temperature
growth scale in the thermal boundary layer is

Tb ∼ 1

k
H0δT e−Aηx ∼ 1

k
H0δT , (9)

where δT is the thickness of the thermal boundary layer. A balance between the
unsteady and diffusion terms in the energy equation, (4), yields a scale for the growth
of the thickness of the thermal boundary layer

δT ∼ (kt)1/2. (10)
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The experimental measurement has demonstrated the validity of the growth scale of
the thickness of the thermal boundary (Lei et al. 2000b). Using (10), the temperature
growth scale in the thermal boundary layer becomes

Tb ∼ H0

δT
t ∼ H0

(
t

k

)1/2

. (11)

For t � h2/k (the time scale for the bottom heat flux to diffuse over the entire
depth), δT � η−1 (recall that h < η−1), i.e. the temperature diffusion length scale
is much smaller than the radiation penetrating scale. In natural water bodies, the
typical observed value of the bulk attenuation coefficient is O(1 m−1) (Kirk 1986). A
laboratory measurement in a water tank following the experiment of Lei et al. 2000b)
gives an estimation of the bulk attenuation coefficient of η = 6.16 m−1, whereas the
measured thickness of the thermal boundary layer was only up to a few millimetres
(Lie et al. 2000b). Using the observed data, a comparison between (8) and (11) yields
Tb � Ta. Thus, the heat conduction from the sloping bottom dominates the direct
radiation absorption in the enclosure.

2.1.2. Inception of the circulation

The direct absorption of the radiation by the water column generates no horizontal
temperature gradient, but causes vertical stratification in the wedge, which is a
stabilizing process. Therefore, the temperature growth given by (8) does not cause
any flow. However, the heat conduction from the sloping bottom to the thermal
boundary layer produces a horizontal temperature gradient within the thermal layer
in addition to a vertically adverse temperature gradient; thus, a horizontal pressure
gradient is established which in turn drives a circulation in the cavity. There are two
contributions to the horizontal pressure gradient, one is the horizontal component
of the heat flux boundary condition at the sloping bottom, and the other is the
variation of the temperature along the boundary layer. The former is approximately
AH0e

−Aηx/k (derived from equation (7)), and the latter can be obtained from equation
(9) by taking the partial derivative with respect to x, which gives AH0ηe−Aηx(t/k)1/2.
A comparison between these two gradients suggests that the horizontal component of
the heat flux boundary condition dominates up to t ∼ 1/(kη2). Therefore, it is expected
that the isotherms in the thermal boundary layer are approximately parallel to the
sloping bottom for small time. Since much of the flow development under concern
will be complete within a time scale t < h2/k < 1/(kη2), the contribution from the
temperature variation along the boundary layer is excluded in the subsequent analysis.

It is assumed in the present study that the inclination angle of the bottom is very
small, i.e. A � 1, which is typical in geophysical situations. This assumption admits
the adoption of the thickness of the thermal boundary layer (δT ) as an approximate
vertical length scale. The small-slope assumption also implies that the horizontal
component of the flow velocity approximately represents the flow velocity up the
slope, while the vertical component of the flow velocity is negligible. Since L < 1/(Aη),
i.e. the length of the domain is less than the horizontal length scale beyond which
the variation of the thermal boundary condition becomes significant, the appropriate
horizontal length scale for the thermal boundary layer is then L = h/A. A balance
between the pressure gradient and buoyancy terms in the vertical momentum equation,
(3), yields a scale for the pressure in the thermal boundary layer

p

ρ0

∼ gβTbδT ∼ gβH0t. (12)
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In the horizontal momentum equation, (2), the unsteady inertia term is O(u/t), the
advection term is O(u2/L), and the viscous term is O(νu/δ2

T ). The ratio of the advection
term to the unsteady inertia term is O(ut/L). For small enough time t, ut < L, and
thus the advection term is insignificant when compared with the unsteady inertia
term. Using (10), the ratio of the unsteady inertia term to the viscous term is O(Pr−1),
where Pr is the Prandtl number defined as

Pr = ν/k. (13)

The present scaling analysis considers only flows with a Prandtl number greater than
unity. For Pr > 1, the viscous term dominates the unsteady inertia term. Hence,
the correct momentum balance in the horizontal direction is between the pressure
gradient and the viscous terms, which then yields a velocity scale in the thermal
boundary layer

u ∼ APrGr
(

t

h2/k

)2
k

h
, (14)

where Gr is the Grashof number defined by

Gr =
gβH0h

4

ν2k
. (15)

Momentum is both advected away by the velocity, (14), and diffused into the core
beyond the thickness δT . The ratio of the advection to the diffusion of momentum
over δT is O(A2Gr(kt/h2)3). Therefore, for t < ta, where ta is given by

ta ∼
(

1

A2Gr

)1/3
h2

k
, (16)

vorticity is diffused into the core, generating a secondary viscous layer of thickness

δν ∼ (νt)1/2. (17)

It is clear that δν is greater than δT for Pr > 1. Therefore, a double-layer structure
appears in the region near the sloping bottom, with the inner thermal layer governed
by a buoyancy–viscous balance and the outer viscous layer governed by an inertia–
viscous balance.

2.1.3. Steady state of the boundary layer

While the thermal boundary layer is growing because of the heat being conducted
into this layer from the sloping bottom, heat is also being convected away from the
thermal boundary layer by the velocity, equation (14). The thermal layer will continue
to grow until the heat conducted in from the sloping bottom is balanced by that
convected away. In the early stage, the convective term of equation (4) is O(uTb/L)
and the conduction term is O(kTb/δ

2
T ). Using (10) and (14), the balance between the

convection and conduction terms yields a growth time scale for the thermal boundary
layer

tc ∼
(

1

A2PrGr

)1/3
h2

k
. (18)

At t ∼ tc, the length, temperature and velocity scales for the boundary layer have
become

δT ∼
(

1

A2PrGr

)1/6

h, (19)
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Tb ∼
(

1

A2PrGr

)1/6
H0h

k
, (20)

u ∼ (A−1PrGr)1/3 k

h
. (21)

Thus, the inner thermal boundary layer grows until it has reached a thickness δT
specified in (19) at time tc. Since tc < ta for Pr > 1, the diffusion of momentum out
of the inner layer maintains the outer viscous layer, which has grown to a thickness

δν ∼
(
Pr2

A2Gr

)1/6

h ∼ Pr1/2δT . (22)

Over the length scale δν , the advection and diffusion of vorticity balance at time tc.
Therefore, tc is also the time scale for the steady state of the double-layer structure,
in which an inner thermal layer governed by a balance of heat conduction and
convection is contained by an outer viscous layer governed by a balance of advection
and diffusion of vorticity.

If δT � h, the thermal boundary layer is distinct, which requires

PrGr > A−2, (23)

and if PrGr > A−2Pr3, the double-layer structure is distinct.

2.2. Onset of the thermal layer instability

Since the thermal boundary layer develops an adverse temperature gradient because
of the heat being conducted from the bottom, this layer is potentially unstable.
If the adverse temperature gradient exceeds a critical value, the instability will set
in. Previous experiments and theoretical analyses (Chandrasekhar 1961; Drazin &
Reid 1981) have revealed that the stability of a fluid layer heated from below is
characterized by a Rayleigh number, Ra, which is defined as

Ra =
gβd4

νk

∣∣∣∣dTdy
∣∣∣∣ or Ra =

gβ∆Td3

νk
, (24)

where d is the depth of the fluid layer, ∆T the temperature difference between
the upper and lower boundaries, and |dT/dy| is the adverse temperature gradient
maintained. Accordingly, a critical Rayleigh number exists, above which the instability
will occur.

Kurzweg (1970) has demonstrated that the critical Rayleigh number at the onset
of convective instability in an inclined layer is directly obtainable from that of
a differentially heated horizontal layer. The relationship between the two critical
Rayleigh numbers is simply given by (see Kurzweg 1970 and also Chen & Pearlstein
1989; Daniels, Plapp & Bodenschatz 2000)

Rac(θ) = Rac(0
◦)/ cos θ, (25)

where θ is the inclination angle of a fluid layer about the horizontal plane (see
figure 1), and Rac(θ) and Rac(0

◦) are the critical Rayleigh numbers for the inclined
and horizontal fluid layers, respectively. For brevity, Rac(θ) will be replaced by
Rac hereinafter. The critical Rayleigh number for a horizontal layer depends on
the boundary configurations and heating conditions, and is readily available in the
literature (Chandrasekhar 1961; Drazin & Reid 1981). For instance, the Rayleigh–
Bénard instability appears at Rac(0

◦) = 1101 if the top fluid surface is free and the
bottom surface is rigid, but at Rac(0

◦) = 1708 if both the top and bottom surfaces are
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rigid. In the present case, the thermal boundary layer is bounded by a rigid surface
at the bottom and a cold water layer on the top, which is equivalent to the free-rigid
boundary configuration, for which Rac(0

◦) = 1101. This value is used in equation (25)
to estimate the critical Rayleigh number for the inclined thermal boundary layer in
subsequent analyses and calculations.

It is necessary to mention that the above criteria for the onset of convective
instability in a horizontal fluid layer were obtained for a fluid layer with constant
temperatures on the bounding surfaces and a linear temperature profile across the
depth of the layer. However, in the present case, a constant heat flux rather than a
constant temperature is maintained on the lower surface of the thermal boundary
layer, and the temperature distribution in the thermal layer exhibits strong nonlinearity
as indicated experimentally (see Lei et al. 2000b). Sparrow, Goldstein & Jonsson
(1964) investigated the thermal instability of a horizontal fluid layer with different
boundary conditions and nonlinear temperature profiles, and found that the critical
Rayleigh number was smaller if a constant heat flux was applied on the boundary or a
nonlinear temperature profile was specified. Since there is no definite data available for
the present flow conditions, the criteria for constant temperature boundary conditions
and linear temperature profiles are carried over to the present analysis. It will soon
become clear that a slight variation of the critical Rayleigh number does not alter
subsequent discussions and any conclusions drawn from them.

The local Rayleigh number in the thermal boundary layer is now calculated from
(24), for which the depth of the fluid layer is δT and the temperature difference across
this layer is Tb. Using (10) and (11), the local Rayleigh number is given by

Ra ∼ PrGr
(

t

h2/k

)2

. (26)

If Ra > Rac, where Rac is calculated in (25), the instability will set in. From (26),
a critical time scale for the onset of thermal-layer instability at given Grashof and
Prandtl numbers is obtained

tB ∼
(
Rac

P rGr

)1/2
h2

k
. (27)

For t < tB , the thermal boundary layer is stable, and for t > tB , the instability will
set in. Since the global Rayleigh number Ra is given by Ra = PrGr, the scale (27)
indicates that the critical time for the onset of convective instability in the thermal
boundary layer is a linear function of the reciprocal of the square root of the Rayleigh
number.

So far, we have obtained two important time scales for the thermal boundary layer;
first, the time scale for the growth of the thermal boundary layer (tc given by (18)),
and secondly, the time scale for the onset of the convective instability (tB given by
(27)). The comparison of these two time scales is given by tc/tB ∼ (PrGr/A4Ra3

c)
1/6.

Therefore, for

PrGr > A4Ra3
c , (28)

tc > tB , and the convective instability will set in before the growth of the thermal
boundary layer ceases. On the other hand, if PrGr < A4Ra3

c , tc < tB , the thermal
boundary layer will reach its steady state before the convective instability sets in.
Since in this case the local Rayleigh number will reach its maximum value at the time
tc, the convective instability will not occur even if the surface radiation is maintained.

Moreover, a critical Grashof number for the onset of thermal layer instability at a
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Figure 2. Dependence of the critical Grashof number on the time of heating.

given time and a fixed Prandtl number can also be obtained from (26)

Grc ∼ Rac

P r

(
h2/k

t

)2

. (29)

For Gr < Grc, the thermal boundary layer is stable, whereas for Gr > Grc, the
instability will set in. Clearly, the above criterion does not apply to t→∞ since there
is a lower limit of the critical Grashof number for the convective instability to set
in. This Grashof number can be obtained from (28), which requires Grc > A4Ra3

c/P r.
Applying this criterion to (29) yields an upper limit of the time scale for the onset of
convective instability, which is tg ∼ (A2Rac)

−1(h2/k). This time scale is identical to tc
and tB for PrGr ∼ A4Ra3

c .
The dependence of the critical Grashof number on the time of heating is plotted

in figure 2. It is seen that as the heating time approaches zero, the critical Grashof
number approaches infinity. The dependence of the critical Grashof number on
the Prandtl number is also clearly demonstrated in figure 2, which shows that the
instability is more prone to occur at large Prandtl numbers. The plot of the critical
Grashof number at a fixed Prandtl number agrees qualitatively well with the lower
bound of Grc given by Farrow & Patterson (1993b), which was obtained from a
linear stability analysis on the basis of an asymptotic solution. Both results indicate
the same trend of the critical Grashof number with the heating time. However, the
stability analysis of Farrow & Patterson (1993b) covers a large-scale lake, and their
result clearly shows the dependence of the critical Grashof number on the x-location.
It is found that the most unstable region is around x ∼ 1/(Aη), and this region
gradually moves toward deeper water as the heating time increases. The present
scaling focuses on shallow waters, for which the x-dependence of the instability is
neglected. Therefore, a quantitative comparison between this and the earlier studies
is difficult.

2.3. Possible flow regimes

At this point, the natural convection flow in the shallow wedge subject to the surface
radiation can be classified into different flow regimes depending on the Grashof and
Prandtl numbers and the relative order of (23) and (28). The comparison between the
scales (23) and (28) relies mostly on the bottom slope. There are two possibilities, i.e.
A−2 > A4Ra3

c and A−2 < A4Ra3
c , which are equivalent to the conditions Rac < A−2

and Rac > A−2.
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In the former case, i.e. Rac < A−2, the bottom slope is extremely small, and thus the
boundary-layer flow is very similar to a horizontal layer heated from below. Consider
first the situation of PrGr < A−2. The thermal boundary layer will grow to a scale
of O(h) at a time scale of O(h2/k) (obtained from (10)), at which the local Rayleigh
number will also reach its maxima. From (26), the maximum local Rayleigh number
is O(PrGr), which is of the same order as the global Rayleigh number. The criterion
for the onset of the convective instability now becomes as simple as PrGr > Rac. This
criterion may also be obtained from (27) with the condition tB < h2/k (i.e. the time
scale for the onset of the convective instability is less than that for the temperature
diffusion), and is consistent with the criterion for a horizontal fluid layer heated from
below (Chandrasekhar 1961; Drazin & Reid 1981). Condition (23) for the existence
of a distinct thermal boundary layer automatically places the flow into the regime
with the convective instability since PrGr > A−2 > Rac (note that Rac has replaced
A4Ra3

c as the criterion for instability). In summary, the following flow regimes may
be classified for the case Rac < A−2.

(i) PrGr < Rac. The flow is stable to the Rayleigh–Bénard instability. The thermal
boundary layer grows steadily, and it encompasses the entire domain before convection
becomes important. The heat transfer is dominated by conduction in this regime.

(ii) Rac < PrGr < A−2. The flow is fully unstable to the Rayleigh–Bénard insta-
bility, and the instability sets in at a time scale specified by (27). The subsequent heat
transfer in the enclosure will be dominated by the secondary convection.

(iii) PrGr > A−2. A distinct thermal boundary layer develops along the sloping
bottom, which is unstable to the Rayleigh–Bénard instability. The instability sets in
at a time scale specified by (27). The heat transfer in this regime will be dominated
by convection.

(iv) For sufficiently high Rayleigh numbers (Ra = PrGr), the thermal boundary
layer becomes turbulent, similar to a horizontal layer heated from below (Burmeister
1993). The turbulent flow regime is out of the scope of the present analysis.

In the other case with Rac > A−2, the bottom slope may play a significant role.
However, the present analysis still follows the assumption of A � 1. The relative
order of the criteria (23) and (28) becomes A−2 < A4Ra3

c , and thus the convective flow
may be classified into the following flow regimes depending on the global Rayleigh
number:

(i) PrGr < A−2. The flow is stable to the Rayleigh–Bénard instability. The thermal
boundary layer grows steadily, and it encompasses the entire domain before convection
becomes important. The heat transfer is dominated by conduction in this regime.

(ii) A−2 < PrGr < A4Ra3
c . Again, the flow is stable to the Rayleigh–Bénard

instability. A distinct thermal boundary layer is established in the enclosure, and it
reaches a steady state prior to the onset of the convective instability. For PrGr >
A−2Pr3, a double-layer structure with an inner thermal layer contained by an outer
viscous layer is distinct. Both conduction and convection participate in the heat
transfer in this regime.

(iii) PrGr > A4Ra3
c . The thermal boundary layer is still distinct in this regime, but

it is unstable to the Rayleigh–Bénard instability. The convective instability sets in
before the growth of the thermal boundary layer completes.

(iv) Similarly, there is also a regime at sufficiently high Rayleigh numbers, in which
the thermal boundary layer becomes turbulent. This regime is not considered here.

It is noteworthy that the above classifications of different flow regimes apply to
shallow regions, corresponding to the region of x < 1/(Aη) in Farrow & Patterson
(1994), which presents a zero-order asymptotic solution for a large-scale lake. For their
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asymptotic solution to be valid, it is required that A2Gr must be small. Moreover, the
nature of the zero-order asymptotic solution implies that only the effect of the vertical
conduction is included in the solution whereas other effects such as the convection and
horizontal conduction are excluded. Therefore, the asymptotic solution of Farrow &
Patterson (1994) only fits into the conductive flow regime up to the lower transitional
regime of the present analysis, in which the vertical conduction is dominant.

The subsequent analysis will focus on the case with Rac > A−2 and consider only
the laminar flow regimes. The flow development in the case with Rac < A−2 can be
analysed with a similar procedure, and to a large extent, can be referred to the case
of a horizontal layer heated from below, for which there is a large body of literature.

2.4. Flow development in different regimes

2.4.1. In the regime PrGr < A−2 < A4Ra3
c

As noted previously, the thermal boundary layer eventually expands to the entire
depth of the enclosure before a balance between heat conduction and convection is
reached in this flow regime. The time scale for the diffusion of the boundary heat flux
over the depth is

td ∼ h2

k
. (30)

At the time td, the temperature and velocity scales have become

Tb ∼ H0h

k
, (31)

u ∼ APrGrk
h
, (32)

and the temperature gradient over the depth of the domain is O(Tb/h) ∼ O(H0/k),
which is in an equilibrium with the heat flux condition applied on the sloping bottom.
Therefore, no heat conduction over the depth will take place after the time td. Instead,
the horizontal heat conduction will dominate owing to the existence of a horizontal
temperature gradient as a consequence of the topographic effect. The time for the
flow to reach a final steady state will be the temperature diffusion time scale over the
length of the domain, which is

tL ∼ L2

k
∼ A−2 h

2

k
∼ A−2td. (33)

This flow regime is classified as a conductive regime with conduction dominating the
heat transfer in both transient and steady states. At the steady state, the temperature
profile in the enclosure will become close to vertically uniform, and the horizontal
heat transfer will be dominated by conduction.

2.4.2. In the regime A−2 < PrGr < A4Ra3
c

In this regime, a stable and distinct thermal boundary layer develops along the
sloping bottom. Since the boundary layer flow is moving up the slope, when it reaches
the tip of the triangular domain, it has no other choice but to change its direction and
discharge into the core region. The core region is initially isothermal. Therefore, the
unheated fluid from the viscous layer discharges as a potential flow into the central
part of the domain, whereas the heated fluid from the thermal layer travels across
the top of the domain, and thus an upper intrusion layer is formed. The flux of
the discharge of thermal boundary-layer flow is QH ∼ uδT . For t < tc, QH increases
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with time, while for t > tc, QH becomes constant. Invoking the principles of mass
conservation, the volumetric flow rate of the intrusion flow must be the same as that
of the thermal boundary layer flow, i.e.

ui∆ ∼ uδT , (34)

wher ui is the velocity of the intrusion flow, and ∆ is the thickness of the intrusion
layer.

For the intrusion flow, the appropriate horizontal length scale is the length of
the domain (L), and the vertical length scale is the thickness of the intrusion layer
(∆).Therefore, the inertia term of the intrusion flow is O(uit), the advection term
is O(u2

i /L), and the viscous term is O(νui/∆
2). The intrusion flow is driven by

a buoyancy-induced horizontal pressure gradient of O(gβTb∆/L). For t < tc, the
correct momentum balance within the intrusion layer is between the viscous term and
the horizontal pressure gradient. Thus,

ν
ui

∆2
∼ gβTb∆

L
. (35)

Combining (34) and (35) and using (10), (11) and (14) yields the thickness and velocity
scales of the intrusion flow as

∆ ∼ (kt)1/2, (36)

ui ∼ APrGr
(

t

h2/k

)2
k

h
. (37)

These two scales are identical to the corresponding scales of the thermal boundary
layer. This indicates that the intrusion layer is growing on the same scales as the
thermal boundary layer.

Now the relative scales of inertia, advection and viscous terms for the intrusion flow
can be verified. The ratio of inertia to viscous terms is O(∆2/νt) ∼ O(Pr−1), and thus
for Pr > 1, the inertia term is insignificant when compared with the viscous term.
The ratio of the advection to viscous terms is O(ui∆

2/νL). For t < tc, O(ui∆
2/νL) <

O(Pr−1) < 1, and thus the advection term is also insignificant when compared with
the viscous term. Therfore, the viscous term is indeed dominant for t < tc.

The growth of the intrusion layer will complete if the heat conduction balances
the convection. A balance between these two terms gives a growth time scale for the
intrusion layer

ti ∼
(

1

A2PrGr

)1/3
h2

k
. (38)

This time scale is identical to the growth time scale for the thermal boundary layer.
At the time ti, the thickness and velocity of the intrusion layer have grown to

∆ ∼
(

1

A2PrGr

)1/6

h, (39)

ui ∼ (A−1PrGr)1/3 k

h
. (40)

Again, these scales are identical to those of the thermal boundary layer. Since both
the thermal boundary layer and the upper intrusion layer reach their steady state at
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the same time scale, the convective flow in the enclosure also reaches its steady state
at this time scale. At t ∼ ti, the intrusion layer has penetrated a distance of

uiti ∼ h

A
= L, (41)

which is equivalent to the length of the domain. This suggests that the approach to
steady state of the convective flow is also approximately indicated by the arrival of
the intrusion head at the end wall. At the steady state, the volumetric flow rate across
a sectional plane is given by

Q ∼ ui∆ ∼
(
PrGr

A4

)1/6

k. (42)

2.4.3. In the regime PrGr > A4Ra3
c > A−2

This flow regime is characterized by the presence of convective instability, which is
due to the development of an adverse temperature gradient in the thermal boundary
layer. The development of the boundary-layer flow in the early stage (for t < tB)
is quantified by the scales (10), (11) and (14). At the time tB , which is prior to the
completion of the boundary-layer development, the thermal boundary layer becomes
unstable to the Rayleigh–Bénard instability. The pattern of the secondary convection
depends on a number of factors, such as the Grashof number, the bottom slope
and the boundary conditions, and is out of the scope of the present investigation.
The subsequent flow development is complicated, and thus cannot be quantified by
a simple scaling analysis. However, a qualitative description of the process is not
impossible.

An immediate consequence of the onset of the convective instability is to cause
heat loss from the thermal boundary layer and further destruction of this layer.
The lost heat from the bottom layer then heats up the upper fluid layer, which
in turn reduces the adverse temperature gradient in the lower layer and tends to
suppress the secondary convection. As the surface radiation persists, the lower layer
is heated continuously by heat conduction from the sloping bottom, and the adverse
temperature gradient builds up again. At a certain stage, the lower layer again becomes
unstable and the secondary convection begins. The previous process is repeated. The
cyclic process happening in an unstable thermal boundary layer is described by Foster
(1971) in the context of intermittent convection as follows: the formation of a thermal
boundary layer by diffusion, the instability of this layer when it becomes sufficiently
thick, the destruction of the layer by convection, the dying down of the convection
and the reformation of the thermal boundary layer by diffusion. This process results
in a fluctuation of both the temperature and velocity in the enclosure.

For relatively low Rayleigh numbers, the secondary motion occurs only in a
transient stage. After some adjustment of the temperature structure in the enclosure
owing to the secondary convection, the horizontal convection associating with the
main circulation effectively balances the heat conduction from the sloping bottom.
Therefore, a steady state with no secondary convection will be reached. However,
the situation for high Rayleigh numbers is different. Despite the heat loss from
the secondary convection, the excessive heating from the sloping bottom cannot be
fully balanced by the primary convection, and it is sufficient to build up a critical
temperature gradient in a short time, and thus maintain a secondary convection.
Therefore, the steady state will be oscillatory for sufficiently high Rayleigh numbers.
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3. Numerical procedures
In order to test the validity of the previous scaling analysis and obtain better

understanding of the flow features in different flow regimes, the convective flow in the
triangular enclosure is solved numerically. For the convenience of numerical solution,
the governing equations are first simplified with a quasi-steady state assumption, and
then normalized with properly selected scales. Details of the numerical procedures
are given below.

3.1. Quasi-steady state simplification

For the convective flow considered in this study, the water body in the enclosure
is heated continuously by absorbing the radiation penetrating through the water
column, and there is no heat loss through the boundaries. Therefore, the water
temperature will keep increasing without a limit, and there will be no steady state
in terms of temperature. However, with a constant surface radiation being applied,
a quasi-steady state may be reached in which the temperature gradients and flow
velocities become steady. In the quasi-steady state, the temperature increases at the
same rate everywhere in the tank, and the net increase of the temperature is a function
of time. Therefore, the temperature can be split into two components

T = T̄ (t) + τ(x, y, t), (43)

wher T̄ (t) is the spatially averaged temperature which increases in time, and τ(x, y, t)
is the spatial variation of temperature which has a steady-state spatial distribution
after a transition. The average temperature T̄ (t) can be obtained from a balance of
energy entering from the surface and that absorbed by the water body, which gives

T̄ (t) =
2H0

h
t. (44)

It is seen that the average temperature in the tank increases linearly with time.
Substituting (43) into (4) and using (6) and (44) yields an energy equation with

respect to τ

∂τ

∂t
+ u

∂τ

∂x
+ v

∂τ

∂y
= k∇2τ+

(
H0ηeηy − 2H0

h

)
. (45)

Since all boundary conditions for the temperature T involve temperature gradients
only and are independent of time, the same boundary conditions apply for τ as for T .
Equation (45) is identical to (4) except that there is an extra term of heat sink on the
right-hand side. This is interpreted as placing a uniformly distributed heat sink equal
to 2H0/h across the tank while it is heated by the absorption of radiation entering
from the surface. When the heat loss from the sink is balanced by the heat capture
from the absorption of radiation, a steady state is reached for τ, which corresponds to
the quasi-steady state for T . In the following context, no distinction is made between
the quasi-steady state for the temperature T and the steady state for the temperature
τ, and τ in (45) will be denoted by T . The complete system equations now consist of
(2), (3), (45) and (5).

3.2. Normalization

The quantities in the governing equations are normalized by the following scales:
Length scale: x, y ∼ h;
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Time scale: t ∼ h2

k
;

Temperature scale: (T − T0) ∼ H0h

k
;

Velocity scale: u, v ∼ k

h
;

Pressure scale:
1

ρ0

∂p

∂x
,

1

ρ0

∂p

∂y
∼ gβH0h

k
;

Attenuation coefficient scale: η ∼ 1

h
.

Using the above scales for equations (2), (3), (45) and (5), a non-dimensional form of
the governing equations is obtained

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −Pr2Gr

∂p

∂x
+ Pr∇2u, (46)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −Pr2Gr

∂p

∂y
+ Pr∇2v + Pr2GrT , (47)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T + (ηeηy − 2), (48)

∂u

∂x
+
∂v

∂y
= 0. (49)

All the quantities in (46)–(49) are now dimensionless.

3.3. Numerical schemes

The governing equations in the non-dimensional form are solved using a finite-
difference scheme. The velocity components and temperature are directly obtained
from the Navier–Stokes equations and the energy equation, and the pressure is
calculated from a pressure Poisson equation. By taking the divergence of the Navier–
Stokes equations and applying the continuity condition, the following pressure Poisson
equation is obtained

∇2p = − 1

Pr2Gr

(
u2
x + 2uyvx + v2

y +
∂D̃

∂t

)
+ Ty, (50)

where D̃ = ux + vy is the residual of continuity. The subscripts x and y denote

partial derivatives with respect to horizontal and vertical directions. The term ∂D̃/∂t
is retained in (50) in order to eliminate the accumulation of numerical errors (see
Lei et al. 2000a and references therein). The temperature equation, Navier–Stokes
equations and the pressure Poisson equation are solved alternatively to obtain the
temperature, velocity and pressure fields.

A coordinate transformation is applied to transfer the physical domain to a com-
putational domain so that the system equations are solved on a curvilinear mesh, on
which the mesh points can be easily distributed as required. Details of the coordinate
transformation can be found in Lei et al. (2000a). Equations (46) to (50) are then
discretized in the transformed computational domain which contains an orthogo-
nal mesh. Standard second-order central differencing scheme is used for all spatial
derivatives except the nonlinear terms in the momentum and energy equations. The
nonlinear convective terms are approximated with a modified second-order upwind
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scheme proposed by Kawamura & Kuwahara (1984):(
f
∂φ

∂ξ

)
i,j

= fi,j(−φi+2,j + 8φi+1,j − 8φi−1,j + φi−2,j)/12∆ξ

+|fi,j |(φi+2,j − 4φi+1,j + 6φi,j − 4φi−1,j + φi−2,j)/4∆ξ, (51)

where φ denotes any scalar such as u, v or T in the governing equations, f a
spatially dependent coefficient, ξ a coordinate in the computational domain, ∆ξ the
grid spacing, and i and j are the sequential numbers of mesh points in two directions
of the computational domain. The above differencing scheme actually has third-order
accuracy in space.

The time integration for the velocity components and temperature is by a second-
order time accurate backward differencing scheme:

∂φ

∂t
=

3φn+1 − 4φn + φn−1

2∆t
, (52)

where ∆t is the time step. The correction term on the right-hand side of the pressure
Poisson equation is also discretized with this scheme. The system equations are then
solved implicitly with a successive over-relaxation (SOR) method by an iterative
procedure.

The numerical procedures described above have been tested extensively and vali-
dated against several benchmarks. They have also been successfully applied to the
modelling of different flows (e.g. Lei et al. 2000a and references therein). Therefore,
these procedures are applied directly to the present convective flow.

4. Results and discussion
For the discussions of the numerical results, two parameters that have practical

significance are calculated from the numerical data: the volumetric flow rate (or the
strength of the circulation) and the horizontal heat transfer rate. These two parameters
are defined in a two-dimensional domain as (Horsch et al. 1994):

Q(x) = 1
2

∫ 0

−Ax
|u| dy, (53)

H(x) =

∫ 0

−Ax

(
uT − ∂T

∂x

)
dy, (54)

where Q(x) and H(x) are, respectively, the volumetric flow rate and horizontal heat
transfer rate across a vertical sectional plane at a given x location. These two
quantities have been normalized using the scales Q ∼ k and H ∼ I0h, respectively. It
can be seen from the definition that the horizontal heat transfer rate incorporates the
contributions of both convection and conduction. If the volumetric flow rate (53) and
the horizontal heat transfer rate (54) are integrated along the horizontal direction as
follows:

Q =
1

L

∫ L

0

Q(x) dx, (55)

H =
1

L

∫ L

0

H(x) dx, (56)
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an averaged volumetric flow rate Q and an averaged heat transfer rate H across the
entire triangular domain are obtained.

Numerical solutions are now obtained with the aforementioned numerical proce-
dures for a fixed bottom slope A = 0.1. A number of combinations of Prandtl and
Grashof numbers (see table 1), which spread over all three laminar regimes under
the condition Rac > A−2, are calculated. It is noteworthy that the boundary between
adjacent flow regimes is not definite since a scaling factor applies to each scale. All
calculations are conducted in a triangular domain of a dimensionless length L = 10
and a depth of h = 1. To avoid singularity at the tip in the numerical simulations,
the tip is cut off at x = 1.0, and an extra rigid non-slip and adiabatic wall boundary
is assumed near the tip. The heat sink term in equation (48) is adjusted accordingly
for the new geometry. It is anticipated that the cutoff tip will not modify the flow
significantly. An 81 × 61 non-uniform mesh is used for all the calculations. The di-
mensionless bulk attenuation coefficient of water is taken from the experiment of Lei
et al. (2000b) and a subsequent measurement which gives η = 0.37. As a check of the
validity of numerical solutions, the convective flow is first calculated for the case of
Gr = 2.51 × 106 and Pr = 6.83, for which experimental data is available (Lei et al.
2000b). It is found that the numerical simulation has reproduced most of the flow
features that was observed in the experiment (Lei & Patterson 2001).

A mesh and time-step dependence test has also been conducted for the previous
high-Rayleigh-number case by halving the grid resolution and time step simul-
taneously so that the CFL (Courant–Freidrich–Lewy) number remains the same. The
time histories of the calculated mean flow rate with both coarse and fine meshes
are plotted in figure 3. It is seen in this figure that both solutions indicate three
stages of the flow development, an initial growth stage, a transition stage and a
quasi-steady stage. In the initial growth stage, the two solutions follow each other
closely. The transition stage is characterized by the onset of convective instability.
The starting time of the convective instability (see § 4.2.3 for the determination of
this time) predicted with both the coarse and fine meshes is 0.01, and the time to
reach a quasi-steady state is around 0.15. In the quasi-steady state, both solutions
show a similar pattern. The average flow rate at the quasi-steady state (averaged
from t = 0.15 to 0.25) obtained from the coarse and fine meshes are 39 and 40,
respectively, and the variation is less than 3%. However, the solutions of the coarse
and fine meshes diverge significantly in the transition stage, in which the convective
instability is dominant. This is because the formation of convective cells is extremely
sensitive to the grid resolution. Since the purpose of the present study is to identify
the major scales for the development of the flow rather than resolve the details of the
convective instability, the discrepancy between the coarse and fine meshes is tolerated.
In addition, the previous case has a Rayleigh number close to the higher end of
the laminar flow regime considered in the present study, whereas most of the cases
calculated here have a Rayleigh number well below this limit. It is expected that
the numerical solution becomes less sensitive to the grid resolution at low Rayleigh
numbers. Therefore, the coarse mesh is used for the subsequent calculations.

The typical flow features in different flow regimes will be discussed in § 4.1, and
selected scales will be validated in § 4.2.

4.1. Flow structures in different regimes

4.1.1. In the regime PrGr < A−2 < A4Ra3
c

Figure 4 presents the numerical results of a representative case in this low-Rayleigh-
number regime with Pr = 4, Gr = 12 and A = 0.1. The steady-state temperature
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Grashof number, Gr

Prandtl number, Pr PrGr < A−2 A−2 < PrGr < A4Ra3
c P rGr > A4Ra3

c

2 10 2× 102, 5× 102, 2× 103, 5× 103,
104, 2× 104, 5× 104

4 12

6.83 5 5× 102, 1.03× 103, 2.87× 103, 2× 104, 7.17× 104, 1.61× 105,
6.45× 103 6.45× 105, 2.51× 106, 1.03× 107, 108

50 5× 102, 103, 2.5× 103 7× 103, 2× 104, 7× 104, 1.5× 105,
6× 105, 2.5× 106

100 1.03× 103 2.87× 103, 6.45× 103, 7.17× 104,
1.61× 105, 6.45× 105, 2.51× 106

Table 1. List of all parameters for the numerical calculations.
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Figure 3. Time histories of the calculated mean flow rate for Pr = 6.83, Gr = 2.51× 106

and A = 0.1 with two different meshes.

contours and streamlines are plotted in figures 4(a) and 4(b), respectively, and the
time history of the integrated mean heat transfer rate (equation (56)) is given in
figure 4(c). The contributions of conduction and convection to the horizontal heat
transfer rate are presented separately in figure 4(c), which clearly indicates that
this flow regime is completely dominated by conduction in both the transient and
steady states. The contribution from convection is very close to zero throughout
the calculation, and thus the two plots of the total and conductive heat transfer
rates are indistinguishable. Since the thermal boundary layer eventually expands to
the entire domain, the heat conduction within the thermal boundary layer creates
a uniform temperature profile over the local depth. The approach to steady state
consists merely of vertical isotherms moving out from the shallow end towards
the deep end (figure 4a). The slight deflection of the isotherms from the vertical
direction is due to the effect of the heat flux boundary condition. At the steady state,
an approximately linear horizontal temperature gradient is established across the
enclosure, which maintains an extremely weak circulation. The streamlines typically
show a single closed cell structure (figure 4b). The dashed streamlines in figure 4(b)
indicate a clockwise circulation in the enclosure.

4.1.2. In the regime A−2 < PrGr < A4Ra3
c

The numerical results of a representative case in this flow regime with Pr = 2,
Gr = 2 × 103 and A = 0.1 are given in figure 5. Figures 5(a) and 5(b) present
the steady state temperature contours and streamlines, respectively, and the time
history of the calculated horizontal heat transfer rate is plotted in figure 5(c). In this
medium-Rayleigh-number regime, convection becomes increasingly significant as the
Rayleigh number increases, and both conduction and convection participate in the
heat transfer. The isotherms are tilted in both the thermal boundary layer and the
upper layer owing to the convective effect. However, vertical isotherms are still present
in the region close to the shallow end (figure 5a), indicating that the heat transfer
in the shallow region is dominated by conduction. Clearly, the circulation becomes
much stronger in this flow regime (figure 5b), but the streamlines still show a single
cell structure. The convective effect can be more or less important depending on the
Rayleigh number. For the case presented here, the conductive and convective effects
become equally important at the steady state (figure 5c). Note that the horizontal
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Figure 4. The numerical results for Pr = 4, Gr = 12 and A = 0.1. (a) Steady-state temperature
contours. The contour interval is 2. (b) Steady-state streamlines. The contour interval is 0.0192.
(c) Time history of the horizontal heat transfer rate.
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Figure 5. The numerical results for Pr = 2, Gr = 2× 103 and A = 0.1. (a) Steady-state temperature
contours. The contour interval is 1. (b) Steady-state streamlines. The contour interval is 0.4.
(c) Time history of the horizontal heat transfer rate.

convective heat transfer exhibits a distinct dip at the early stage in this flow regime
(figure 5c). A similar dip can also be observed in the convective flow regime (figure 7c)
which occurs on a shorter time scale. The existence of the dip indicates an imbalance
between the strong up-slope flow of hot water in the boundary layer and the weak
return flow of cool water in the bulk of the domain at the early stage.
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Figure 6. Instantaneous flow fields for Pr = 6.83, Gr = 2.51 × 106 and A = 0.1. (a) Temperature
contours at transition stage (t = 0.03). The contour interval is 0.01. (b) Streamlines at transition
stage (t = 0.03). The contour interval is 20. (c) Temperature contours at quasi-steady stage (t = 0.2).
The contour interval is 0.02. (b) Streamlines at quasi-steady stage (t = 0.2). The contour interval
is 10.
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Figure 7. The numerical results for Pr = 6.83, Gr = 2.51× 106 and A = 0.1. (a) Mean temperature
contours at quasi-steady state (averaged for t from 0.15 to 0.4). The contour interval is 0.02.
(b) Mean streamlines at quasi-steady state (averaged for t from 0.15 to 0.4). The contour interval is
10. (c) Time history of the horizontal heat transfer rate.

4.1.3. In the regime PrGr > A4Ra3
c > A−2

This is the regime that is characterized by the presence of convective instability as
a consequence of excessive heating in the thermal boundary layer. A representative
case with Pr = 6.83, Gr = 2.51 × 106 and A = 0.1 is calculated to demonstrate the
features of this flow regime. As noted previously, the flow development in this case
occurs in three stages, an initial growth stage, a transition stage and a quasi-steady
stage (see figure 3 and also figure 7c). The start of the transition stage is marked by
the onset of the instability, which causes distinct fluctuations of flow properties such
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as the heat transfer rate (figure 7c). The quasi-steady state is reached when a steady
constant mean value is achieved for all flow properties.

Figure 6 demonstrates the flow structures at the transition and quasi-steady stages.
At the transition stage, the excessive heating from the sloping bottom results in
the manifestation of the Rayleigh–Bénard instability in the form of rising thermals
(figure 6a). Since initially the top fluid layer has a temperature much lower than
that of the thermal boundary layer (recall that the present study is concerned with
shallow waters with h < η−1, and thus a significant amount of the radiation reaches
the bottom), the rising thermals penetrate the entire depth of the enclosure and
eventually reach the water surface. As a consequence, a cellular flow pattern is
formed (figure 6b). The secondary convection accelerates the heat exchange between
the top layer and the thermal boundary layer, and thus reduces the temperature
gradient over the depth, which in turn weakens the secondary motion.

At the quasi-steady state, the intensity of the secondary convection has been
reduced significantly. Since the temperature in the top layer has become comparably
high compared with that in the thermal boundary layer at this stage, the secondary
convection is now restricted within a thin layer above the thermal boundary layer
(figure 6c). The weak secondary motion is not strong enough to break up the main
circulation, and thus the main circulation contains only a single cell although multiple
cores are visible owing to the weak effect of the secondary convection (figure 6d).
The single-cell circulation could be due to the least stable mode occupying the entire
domain as happens with fixed flux boundary conditions (Chapman & Proctor 1980).

The structure of the mean flow at the quasi-steady stage (averaged from t = 0.15 to
0.4) is presented in figures 7(a) and 7(b). It is seen in figure 7(a) that the temperature
contours at the quasi-steady state consist of bent isotherms with the upper portion
approximately parallel to the water surface and the lower portion nearly parallel to
the sloping bottom, indicating the strong effect of convection. However, the isotherms
become closer to vertical as the location moves from the deep region towards the
tip, suggesting an increasing effect of conduction near the tip. The streamlines of the
mean flow consist of two cells (figure 7b). The formation of the counterclockwise
circulating cell near the lower corner of the deep end is due to the separation of
the wall shear layer at this end, which does not appear at low Rayleigh numbers.
As expected, the heat transfer in this high-Rayleigh-number regime is completely
dominated by convection, which is clearly seen in figure 7(c). The two plots of the
total and convective heat transfer rates are indistinguishable in figure 7(c) since the
contribution from conduction is negligible in this case.

4.1.4. Dependence of the steady-state heat transfer rate on the Rayleigh number

The previous numerical results have demonstrated that the heat transfer in the
triangular enclosure depends on the Rayleigh number. This is again shown in figure 8,
where the total heat transfer rate and the separate contributions from convection and
conduction at the steady/quasi-steady state are plotted against the Rayleigh number.
The data in figure 8 are mostly obtained from the three lower Prandtl numbers given
in table 1. It can be seen in figure 8 that the total heat transfer rate at the steady or
quasi-steady state is approximately constant (≈ 1.2) over the entire calculated range
of Rayleigh numbers, indicating that the overall heat transfer is proportional to the
radiation intensity on the water surface (recall that the horizontal heat transfer rate
is normalized by I0h).

The contributions of conduction and convection to the total heat transfer are
clearly demonstrated in figure 8. At very low Rayleigh numbers, the flow is purely
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Figure 8. Dependence of the steady-state heat transfer rate on the Rayleigh number.

conductive, whereas at very high Rayleigh numbers, the flow is purely convective. At
medium Rayleigh numbers, both conduction and convection contribute to the overall
heat transfer. Therefore, the flow can be classified into three regimes: a conductive
regime, a transition regime and a convective regime depending on the Rayleigh
number. These three regimes are approximately separated by the criteria A−2 and
A4Ra3

c , as discussed previously and marked in figure 8.

4.2. Validation of selected scales

In the following context, selected property scales are validated against the numerical
data in order to verify the validity of the previous scaling analysis.

4.2.1. Maximum flow velocity

The velocity scales for the transitional regime is considered here. The steady-state
velocity in the thermal boundary layer, which is also the maximum flow velocity to
be achieved in this layer, is governed by (21). The maximum flow velocity achievable
in the upper intrusion layer is governed by (40). These two velocity scales are
identical, suggesting that the maximum velocities in the thermal boundary layer and
the intrusion layer are of the same order. The calculated maximum velocities in
both layers are plotted against the dimensionless velocity scale in figure 9. Here, the
numerical data are extracted from the steady-state velocity profile along a vertical line
at x = 5.5. It is clear that all the numerical data are represented well by the proposed
velocity scales. The calculated slopes of the linear fit lines are 0.45 for the thermal
boundary layer and 0.69 for the upper intrusion layer. Both slopes are of the order
of unity. The numerical data presented in figure 9 actually span two flow regimes, the
transitional and convective regimes. This indicates that the scales (21) and (40) for
the maximum flow velocities in the thermal boundary layer and the intrusion layer,
proposed for the transitional flow regime, are also applicable to the convective regime
(for PrGr > A4Ra3

c > A−2).

4.2.2. Volumetric flow rate

Again, the transitional flow regime is considered. The steady-state volumetric flow
rate in this regime is governed by (42). The numerical data are plotted against the
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dimensionless flow rate in figure 10. It is clear that the dependence of the calculated
steady-state volumetric flow rate on the predicted non-dimensional flow rate is linear
(the slope of the linear fit line is 0.37), and thus the scale (42) is representative for the
steady-state flow rate in the transitional regime.

4.2.3. Critical time for the onset of convective instability

According to the scaling results in § 2.2, the convective instability presents in the
convective regime for PrGr > A4Ra3

c , and the critical time scale for the onset of the
instability is tB , given by (27). This scale is validated here, where the critical Rayleigh
number Rac is calculated from equation (25) with Rac(0

◦) = 1101. In the numerical
simulation, the time tB for the onset of the convective instability is determined as
the time when the first trough appears in the time history of the integrated mean
heat transfer rate (see figures 3 and 7c). This is based on the fact that the onset
of the convective instability results in a temperature drop in the thermal boundary
layer and is always followed by subsequent fluctuations of flow properties owing
to the secondary motion. With the integrated mean heat transfer rate used for the
determination of tB , the overall behaviour within the enclosure is concerned. The time
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numerical data.

tB may also be determined from the time plots of the horizontal heat transfer rates
or temperatures at discrete locations. Since an inhomogeneous boundary condition is
prescribed along the sloping bottom, the time tB determined from these discrete plots
will be dependent on the horizontal location. However, it is expected that the result
based on either method does not alter the conclusions drawn from the following
validation.

The calculated time at the onset of the convective instability is plotted against the
prediction in figure 11. The numerical data are mostly obtained at Rayleigh numbers
in the convective regime, but also include some Rayleigh numbers at the upper end
of the transitional regime. This plot clearly indicates a linear dependence between
the calculated and predicted critical times. The slope of the linear fit line in figure 11
is 0.59, which is of the order O(1). Therefore, the critical time for the onset of the
convective instability is represented by the scale (27).

5. Conclusions
The purpose of the present scaling analysis and numerical simulation is to identify

possible flow regimes of the unsteady natural convection flow in a small-slope shallow
wedge induced by the absorption of solar radiation, and establish relevant scales to
quantify the flow properties in each regime. It is revealed that, in the case of Rac > A−2,
this flow can be broadly classified into one of three regimes: a conductive regime, a
transitional regime and a convective regime, depending on the Rayleigh number. The
major features of each flow regime are summarized as follows:

(i) Conductive regime. For Ra < A−2, the flow is purely conductive. The thermal
boundary layer grows to encompass the entire domain before convection becomes
important. At the steady state, the energy from the surface radiation is uniformly
distributed over the local depth, and thus an approximately linear horizontal temper-
ature gradient is established across the enclosure. A weak circulation is maintained
at the steady state.

(ii) Transitional regime. For A−2 < PrGr < A4Ra3
c , both conduction and convection

participate in the heat transfer. The convection is more or less important depending
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on the Rayleigh number. The transient flow development is described by the scales
(10), (11) and (14). A steady state is reached when the conduction balances the
convection in both the thermal boundary layer and the upper intrusion layer at time
scales (18) and (38), which are identical. At the steady state, the thermal boundary
layer is distinct, and the maximum flow velocity is given by (21) and (40).

(iii) Convective regime. For PrGr > A4Ra3
c , the flow becomes purely convective.

The thermal boundary-layer development in the early stage is described by the scales
(10), (11) and (14). At the time scale (27), the Rayleigh–Bénard convection sets in, and
the subsequent flow development and approach to steady state become oscillatory. At
a certain stage, a quasi-steady state is reached where both the primary convection and
a secondary convection coexist. The mean flow at the quasi-steady state consists of a
main circulation cell and a small bubble caused by the separation of the wall shear
layer at the deep end. The numerical data indicate that the maximum flow velocity
at the quasi-steady state is also quantified by (21) and (40).

Similarly three flow regimes are possible for other case with Rac < A−2, which
shares some features of a horizontal fluid layer heated from below. The flow is stable
and fully conductive if PrGr < Rac, whereas it becomes fully unstable in the regime
Rac < PrGr < A−2. Further increase of the Rayleigh number will result in a distinct
thermal boundary layer developing along the sloping bottom, which is unstable to the
Rayleigh–Bénard instability. The flow is fully convective in this high-Rayleigh-number
regime.

At this point, the role of the critical Rayleigh number (Rac) becomes clear. It serves
two purposes in the present analysis: dividing the flow regimes and affecting the time
scale at the onset of the convective instability (tB). In this study, the critical Rayleigh
number for the inclined thermal boundary layer is related to that of a horizontal
layer heated from below (see equation (25)), and a critical value obtained with fixed
temperature boundary conditions and a linear temperature distribution is adopted for
the horizontal layer. It is understood that the conditions with constant temperatures
on the boundaries and a linear distribution over the depth do not match the case
considered here. However, the effect of this treatment is minimal. A slight variation
of the critical Rayleigh number will move the boundaries that divide different flow
regimes and change the slope of the linear-fit curve in figure 11. This is equivalent
to the effect of a scaling factor for each scale. Therefore, the overall features of the
natural convection flow will remain unchanged.

The scaling results may be verified by the experimental observations described
in Lei et al. (2000b). The experiment was conducted in a triangular tank with a
bottom slope of 0.1, and the experimental Grashof number and Prandtl number
were 2.51 × 106 and 6.83, respectively. These parameters placed the flow in the
unstable convective regime of PrGr > A4Ra3

c > A−2. In this flow regime, a distinct
thermal boundary layer is expected to grow along the sloping bottom. Using the flow
parameters for the scale (27), the predicted time at the onset of instability is 202 s.
Since the numerical simulations have demonstrated that the maximum flow velocity in
the thermal boundary layer is given by (21), the predicted flow velocity is 1.3 mm s−1

for the experiment. In the experiment, a thermal boundary layer was seen to grow on
a scale of (kt)0.5 with a scaling factor of 1.2, and a distinct thermal-layer instability
was observed from about 60 s after the initiation of the surface radiation (Lei et al.
2000b). The intermittent occurrence of the instability created a wavy structure along
the boundary layer, which was then carried by the main circulation up the slope.
The observed flow velocity in the thermal boundary layer, indicated by the travelling
speed of the wavy structure, was around 0.7 mm s−1 (not reported in Lei et al. 2000b).
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It can be seen that the scaling predictions are in good agreement with the observed
data.
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